

Speeds & Feeds

This chart provides starting parameters for calculating speeds and feeds. Actual feeds and speeds will depend on many variables including machine tool condition, rigidity, workpiece size and shape, tool extension, depth of cut, etc. If you have questions regarding a specific application please contact us.

Workpiece Material			rial	Examples	Hardness HB	Cutting Speed (SFM)				Feed
						Uncoated	TiN	TiCN	TiAlN	(IPT)
Steel	Carbon steels	<.25% C	Annealed	10xx, 11xx, 12xx, 12Lxx, 15xx	125	375-480	485-620	525-670	560-740	.003008
	:	>=0.25% C			190	280-360	365-470	390-500	490-660	.003008
	:	>=0.55% C			250	230-300	305-390	320-420	340-460	.003008
	:	>=0.25% C	Hardened	10xx, 15xx	250	-	300-350	340-430	390-520	.002006
		>=0.55% C			300		250-320	270-350	330-430	.002006
	Alloyed steels		Annealed	41xx, 43xx, 86xx	175	-	340-430	360-460	460-610	.002006
			Hardened	41xx, 43xx, 86xx	300	-	280-365	300-390	360-490	.002006
					350	-	245-315	270-340	340-460	.002006
	Tool & die steels		Annealed	A2, D2, H13, O1, S7	200	-	215-280	230-330	340-460	.002006
Stainless	Ferritic/Martensitic		Annealed	416, 420F, 430F	200	240-310	310-390	340-430	420-540	.002005
			Hardened	403, 410, 416	330	-	200-260	220-280	270-350	.002005
			PH-hardened	15-5 Ph, 17-4 Ph	330	-	180-230	200-250	240-315	.002005
	Austenitic		Annealed	304, 316, 321	180	160-215	-	220-300	280-380	.002004
Cast Iron	Gray		Pearlitic/ferritic	Class 20, 25, 30	180	225-285	-	315-400	460-620	.005010
			Pearlitic	Class 45, 50, 60	260	185-245	-	260-340	360-490	.005010
	Ductile		Ferritic	60-40-18, 80-55-06	160	420-450	550-575	600-630	460-620	.003008
			Pearlitic	100-70-03	250	240-310	310-400	340-430	390-520	.003008
Hi-temp	Titanium alloys		α+β alloys	Ti-6Al-4V		105-180	-	-	180-315	.002004
	High temp alloys			Inconel, Monel, Waspaloy		50-90	-		70-130	.002004
NF	Aluminum		Wrought	20xx, 50xx, 60xx, 70xx		1400-2100	-		-	.004006
	Brass, bronze, copper					780-900	-	1100-1300	-	.003005

General Operating Guidelines

Chip Load: Cut with an adequate chip load. Light chip loads can cause inserts to rub, rather than cut causing chatter and premature wear. Light radial cuts may require higher advances per tooth to counteract chip thinning.

Feed Rate: Reduce feed rate by 50% when entering and exiting a cut to reduce the shock of the interrupted cut.

Effective Cutting Edges: When calculating feed rate, use the effective number of inserts specified for the cutter. For staggered tooth slotting, this is 1/2 the total number of inserts. Effective Cutter Diameter: Use an Effective Cutter Diameter when calculating RPM for tools with varying diameters like angle mills, countersinks, and corner rounding tools. Effective Cutter Diameter = (Major Diameter + Minor Diameter) divided by 2. Cut Direction: Climb milling is recommended in most applications. Conventional milling

may be necessary in older machines to minimize backlash. It can also extend insert life in sandy, scaly, welded or work hardened material.

Staggered Tooth Slotting:

- To calculate a starting radial depth of cut, multiply the cutter diameter by 0.10.
- If the cutter is engaged on both sides (as in t-slotting) reduce SFM to 75% of posted values and reduce chip loads to 50% of posted values.

Plunge Milling: When plunge milling, reduce the cutting data by 30%.

 Speed Adjustments

 Use lower end speeds when:
 Use higher end speeds when:

 Cutting harder materials
 Cutting softer materials

 Taking heavy cuts
 Taking light cuts

 Insert wear is a problem
 Productivity is too low

 Finish is poor
 Finish is poor

Feed Adjustments						
Use lower end speeds when:	Use higher end speeds when:					
Fixturing or part is frail	Fixturing & part are sturdy					
Tool overhang ratio is high	Tool overhang ratio is low					
Narrow width slotting	Using wider, heavier cutter					
Insert chipping occurs	Finish is not important					
Finishing	Taking light radial cuts					
Deep slotting						